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COMPUTATION OF UNSTEADY TURBULENT BOUNDARY LAYERS WITH FLOW REVERSAL

AND EVALUATION OF TWO SEPARATE TURBULENCE MODELS

by

Tuncer Cebeci* and Lawrence W. Carr

SUMMARY

Recently a new procedure, which solves the governing boundary-layer

equations with Keller's box method, has been developed for calculating

unsteady laminar flows with flow reversal (1]. In regions where the stream-

wise velocity contains flow reversal, the solution scheme was modified by a

procedure which accounted for the downstream influence. With this modifica-

tion, the unsteady flow over a circular cylinder started impulsively from

rest was successfully calculated to values of time and space greater than

in any previous solutions. An examination of unsteady separation for laminar

flow was made and revealed that the unsteady boundary layer for that flow,

even at large times, was free of singularities.

In this report we extend the method of ref. [1] to turbulent boundary

layers with flow reversal. Using the algebraic eddy viscosity formulation of

Cebeci and Smith (2], we consider several test cases to investigate the

proposition that unsteady turbulent boundary layers also remain free of

singularities.

Since the solution of turbulent boundary layers requires a closure

assumption for the Reynolds shear-stress term and the accuracy of the solutions

depend on this assumption, we also perform turbulent flow calculations by

using the turbulence model of Bradshaw, Ferriss and Atwell [31; we solve the

governing equations for both models by using the same numerical scheme and

compare the predictions with each other, restricting the comparisons to cases

in which wall shear is positive. NTZesir-
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The study reveals that, as in laminar flows, the unsteady turbulent

boundary layers are free from singularities but there is a clear indication

of rapid thickening of the boundary layer with increasing flow reversal.

The study also reveals that the predictions of both turbulence models are the

same for all practical purposes.
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I. INTRODUCTION

The prediction of unsteady turbulent boundary layers with flow reversal

is of importance in a number of aerodynamic problems, notably in dynamic stall,

buffeting and gust studies. However, some of the more popular turbulence

models implicitly assume that the wall shear is positive and their extension
to unsteady flows with flow reversal is not easy. It requires modifications

to the functional form of the law of the wall and to the manner in which the wall

shear is determined. Two near-wall assumptions are considered here. In the

first, the near wall grid point is located in the logarithmic region and the

law of the wall is used to link the flow properties at this grid point to the

wall. In the second, a Van Driest formulation due to Cebeci and Smith [21 is

used; this implies that the grid point closest to the wall will occur in the vis-

cous sublayer.

A further aspect of these flows of current interest is the possibility of

a singularity occurring in the reversed-flow region. Examples of this phen-

omenon have also been reported in laminar flows but, in earlier studies Cebeci

(1,4] and Bradshaw (5] have shown that the occurrence is not a feature of the

governing equations but is due to the limitations of the numerical procedure

used. We shall demonstrate that, for the examples we study, there is no indica-

tion of such a singularity in turbulent flow either but there is a clear indi-

cation of rapid thickening of the boundary layer.

In addition to the examination of wall functions, we have also considered

two turbulence models for unsteady flows without flow reversal. The algebraic

eddy-viscosity formulation of Cebeci and Smith (CS) is compared with the trans-

port model or Bradshaw, Ferriss and Atwell (31 (BF). Calculations were performed

to determine whether the representation of unsteady flows with strong pressure

gradients requires that account be taken of transport of turbulence quantities.

As will be shown, the predictions with both models are nearly identical for

both steady and unsteady flows with and without strong pressure gradient.

The report has been prepared with six main sections describing,

respectively, the governing equatons, the numerical procedure, the results,

concluding remarks, references and the computer program which uses only the

CS model.
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11. GOVERNING EQUATIONS

The continuity and momentum equations can be written for two-dimensional

unsteady incompressible laminar or turbulent thin shear layers as:

0U T T (1)

au a au au ~ aua u + u u + ..Lu e + U-e + T 2-- +V y '-+ U e - + - (2)
t ax By at e ax By

Here

S au- V (3)

and we recall that u' and v' denote fluctuations about the ensemble-

average velocity; u' and v' are zero in unsteady laminar flow, and

v au/ay is negligible outside the viscous sublayer in a turbulent flow.

These equations are subject to the usual boundary conditions, which in the

case of boundary layers are

y = 0, u = v = 0; y +6 u -), Ue(x,t) (4)

The presence of the Reynolds stress term, -77 introduces an additional

unknown to the system given by Eqs. (2) to (4). In this report we present

calculations using two different turbulence models. One is an algebraic

eddy-viscosity formulation developed (for steady flows) by Cebeci and Smith

and the other is a transport-equation model developed by Bradshaw, Ferriss

and Atwell. In the CS model, we write Eq. (3) as

- = (v + em) u (5)m ay

with two separate formulas for em.  In the so-called inner region of the

boundary layer (em)i is defined by the following formula:

= {0.4y[l - exp(-y/A)]12  Iy (6)

where

A - 26vu 11 - ll.8(p+ + r4)f (7a)
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U au + VUe au (7b)

u u

In the outer region cm is defined by the following formula

(Cm)o =0.0168 1 (u, --u)dy (8)

The boundary between the inner and outer regions is established by the contin-

uity of th. eddy-viscosity formulas.

In the BF model, which Is used only outside the viscous sublayer, we

assume T = _urv and write a single first-order partial-differential equa-

tion for it; the equation was originally developed from the turbulent energy

equation but can be equally well regarded as an empirical closure of the exact

shear-stress transport equation. This reads

D T + u aT +vaT = 2a u T V( 2a1 
3/2

Dt = at ax ay ay ay - ()

Here a1  is a dimensionless quantity, V is a velocity and L is the dis-

sipation length parameter, specified algebraically by L/6 = f(n) with

n = y/6 and f(n) given from an analytic fit to an empirical curve by

S0.4n n < 0.18

f(n) = 0.095 - 0.055(2n - 1)2 0.18 < n < 1.1

0.016 exp[-10(n - 1.1)] n > 1.1 (10)

In a more advanced version of this turbulence model (6] L itself is deter-

mined from a transport equation.

The turbulent transport velocity VT, nominally ( 'W+ u'v'2 )/-r'vr

is proportional to a velocity scale of the large eddies and is chosen to be

V = 2a, Tmax g(n) (11)
T Ue

where g(n) is given by
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S33.3n2(0.184 + 0.832n) n < 0.5

g(n) = 33.3n 3(0.368 + 2.496n 3) 0.5 < n 1.0 (12)

18.7n + 14.60 n 1 1.0

In the BF model equations, the inner boundary conditions for (1), (2) and (9)

are applied outside the viscous sublayer, usually at y, = 5Oy/u. In the

steady-flow study reported in [7], these boundary conditions are:

= U,(.1 ln l + 5.2) (13)

V- uy1 Du T(14)I ax

T1 =Tw + Yl + a* w  (15)p P x a l 15

Here v is evaluated from the continuity equation (1), and a* is evaluated

from (1) and (2) on the assumption that the velocity u is given by

u 0U-T (16)

for 0 < y < yl; Eq. (13) is, of course, a special case of (16).-The evalua-

tion of a* is discussed in Ref. (7]; the last term in (15) can be as large

as half the second (pressure-gradient) term. In unsteady flow without flow

reversal, we use the same inner "boundary" conditions at yl = 50v/u , but

because of the presence of the time-dependent term in (2), a* becomes more

complicated. If we again assume that (16) holds - remember that the turbulence

structure of the inner layer is unlikely to be affected unless the external-

stream frequency is very high - then (1) and (2) give

T + f dy +2Yl + f (u2)dy + uv (17)w aty+ ax +f a
0 0 Y=Yl

Integrating we can write
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Yl Yl 2 2--TW+ f udy -u(y,) -t-rxf a
0 0

Y a 2 aY

u x(y) f udy + u (y) a. (18a)
0

because

Tx f - dy 0
o T

We can also write (18a) as

yl 4. u au y
+1 + Y +au au 1u 2 + (18b)

or as
au DT a w

T1 = Tw + YlF a + ,*yl a + a Y1 (18c)

where F = u/u at y = yl and a* comes from the last term in (18b) and

is the same as in steady flow.

Equation (18c) now replaces (15).
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-II III. SOLUTION PROCEDUREI

We use Keller's two-point finite-difference method (called the Box

method) to solve the system of equations described in the previous section.
The application of this method to unsteady flows with no flow reversal using

the CS model has been described in Ref. [8]. Its application to steady two-

dimensional flows using the BF model is described in Ref. [7]. Here we

present a description of the extension of the CS model to unsteady two-

dimensional turbulent flows with flow reversal as well as a description of

the extension of the BF model to unsteady turbulent flows with no flow

reversal.

3.1 CS Method with and without Flow Reversal

As in previous studies (see, for example [8]), we transform the equations

with

x = x/L, t = tuo0/L, n = (u/VX) 2y (19a)

and a dimensionless stream function f( ,n,T), where

= (U0vx) f(i,n,F) (19b)

Here u0  is a reference velocity, L a reference length, and p is the

usual definition of the stream function corresponding to the continuity equation

(1). With the relations defined by (19) and with the definition of eddy

viscosity, equations (1) to (3) and the boundary conditions can be written

as

(bf") + ff" +m x f' af' f,, af + af(20)

n = 0, f f' 0 0; n n , f' Ue/uo (21)

Primes denote differentiation with respect to n anJ

f ' : 0 P 3 =  x D +

(22)
b I + Em  Cm - I

For simplicity, we shall now drop the bars on x and t.
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We use two separate solution procedures to solve the system given by

Eqs. (20) and (21). When there is no flow revw sal across the layer, we

us" the standard Box. On the othe ,icind, when there is flow reversal, then

we use the so-called zig-zag Box as described below.

To solve Eqs. (20) and (21) by the standard Box method, we first write

Eq. (20) in terms of three first-order equations by introducing new depend-

ent variables u(x,n,t), v(x,n,t), that is,

V = u (23a)

u' = v (23b)

(bv)' + fv + P3 = x(u !-v V + ) (23c)

We next consider the net cube shown in Fig. 1 and write difference approxi-

mations to Eqs. (23). Equations (23ab) are approximated using centered dif-

ference quotients and averaged about the midpoint (xi, tn , nj _). The

difference quotients which are to approximate (23c) are written about the

midpoint (xi_ , tn n-j_) of the cube whose mesh widths are ri , kn,

and hj. This procedure yields the following equations:

f,n i,n h u i,n 0 (24a)

i ,n i ,n i ,n
uj :jl hiv (24b)

(bv)l- n (bv)1j -1 + 1 (fv)i'n  , ic 2,i( n u2  +ni + m fv~n i~ i,n + M i i,n)
- ui 42 ,n 2

- 2a = n3  (24c)

where

xi- , -n xi - t m- 234 m4 f(4) _2fi
mi xi -xi1 l  n tn_ tn~l m v. , 4 i- i-i

2 (4) (u( 2) _ - (bv) 234
n =cl(U ~- 2(u )., 2--~n +O

2 nu. J42u -. [b)3 J 4( 2 )i-l 2n - j l

- 234 1 234 i-2- v)j- J1] y f - 4(P3 n_
( I V _ 'n-

7m



n

t

i-l

xi-] xi

Fig. I Net cube for the standard Box method.
234 i-I ,n i-l ,n-I i ,n-I

Here by vj we mean vj + v. + Vj , the sum of the values

of vj at three of the four corners of the face of the box. Also

I l (fnj-l + fn-l - l

- 1 n-l,i + n-li-l,
Un- 1- 2 -

fi,n 1 i,n + fi,ni- (f + -l

The resulting algebraic system given by Eqs. (24) together with the

boundary conditions, which now become

fo U0  = 0, uj = (25)

are nonlinear. We use Newton's method to linearize the system and solve the

linear system by the block elimination method discussed in ref. [9].
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When there is flow reversal across the boundary layer at some x and t,

we modify the standard Box method used for Eq. (23c) but retain that for

(23a,b) and still center them at (xt , tn, n. ). To write the difference

approximations for the Box centered at (x1 ,, tn ,, n-h ) we examine

previously computed values of uijn. If u'" > 0, then we use the standard
Boxmetod i in , -3 i- -Box method: if u'1< O, then we write (23c) for the Box centered at P

(see Fig. 2) using quantities centered at P, Q, and R, where

P (xI, tn_ ni-j_ Q N ( ,i tn, i -

R (xi,., tn-l, ni_ (26)

Equation (23c) can then be written as

1 a(bv)'(P) + T (fv)(P) = x(P) [eu(Q)2.u (Q) + *u(R) l (R) - ev(Q) -f (Q)ax ax ax
- v(R) Z- (R) + 2- (P)] (27)

ax at
Here

x - Xi+l - xi  xi -x-(8
- xI x1- -(28)

Xl+ l  -i l ,xi+ l -xi- l

n

Qe

7P.t
//0

Z//

xi  x1+1 x

Fig. 2 Finite difference molecule for the Zig-Zag differencing.
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The resulting algebraic system is again nonlinear and its solution is obtained

by using the procedure followed in the standard Box method.

3.2 BF Method with no Flow Reversal

The solution of the governing equations for unsteady flows with the BF

model, even with no flow reversal across the boundary layer, is much more dif-

ficult than with the CS model. This is because of the hyperbolic nature of

the governing equations, together with the nonlinear boundary conditions, which

play an important role in the solution procedure. As is common in most (if not

all) methods that use boundary conditions away from the "wall," the wall shear

stress is also an unknown parameter; it can be treated as an eigenvalue or as a

mechul as described in Ref. [7]. The latter procedure is much more efficient

than the former procedure and is used here.

To solve the BF model equations, we first introduce the stream function

w(x,y) as in Ref. [7] in order to satisfy the continuity equation. With

/- w treated as mechul, the resulting system can be written as a system ofw
four first-order equations:

w' = 0 (29a)

= u (2gb)

au + = P3 +t (29c)

Tt ax ax 3u
at U T[ 1312 T ax(GT)' (29d)

We again center Eqs. (29a,b) about the midpoint (xi , t n 1j ) and Eqs.

(29c,d) about the midpoint (xi_ , tn_ , nj- ) of the cube shown in Fig. 1.
This procedure yields the following nonlinear algebraic equations:

i ,n i ,n(3)
wjn - wj_ 1 . 0 (30a)

i WJ-1 J- '_
i,n n hjin,n

Tj -- u- _ o- (30b)uU
+ ~ .1-,n + i~n_ iJn1 (u~ ii n

- s h u n n (30c)- - -~~_

n 3

10



+~~~~~~ i~ [T. i~ - , j ~ ~ j[ 4 I i n i .

n, 1n
T )] i - LZ(T3/2)i n + (T 3/2 ) i- n

+ ,ilf A Tin_+_2__________

i n Ti n
+ (GI)i.Sn i n + n1' - J-1(0d

T- i-9k Gi - hj 4 3d

where now

SXi --X~ 'i- ai tn tn-17ai = a-

4( =-V _~~' (T * 34 i-1,n i-1,n-I i,n-l 2 n-
"3 YYr3n~ ~ - + 2s~ (uj~ - j. Uj.. + a~il(u

- (u )i-3nl Cu)JA9n [{U) + W~-1

i~~-, 11 - ~-

n ~ 2 ~ ~A (u) 34 - -(i 234 .234
4 1 i 3 - -' n i + ( T - 2 A 4  - ( -r -32 ( G r 4 2

A i-l T i- , - - 1

A2  2 u --2,nlI( i,n-l - 1 n-1i) - uijln TjI-1n

n- 1 'j i- - - 11n Iil -~
A3  T)J '2+ (T') lsAnIt* i J A- (T)-

(3/2 ) i~f1 + (T3/2)1-1,-

A4  -2 (t)-k
4 I~,n-I + - -

Again the sys-tem given by Eqs. (30) is nonlinear and is linearized by

using Newton's method. This procedure gives rise to the following form

(2 < J)

6wi - Swj~1  (r3)j (31a)

4j- 6*- 21 (6u + 6uj-1 (r 4 )j-1  (31b)

11



(s 6u+ (s 2) 16uj l + (S 3) 6j + ( 4) J**J-,.1 (SS)j.'j + (s6)j 6-rj~ - r,*

(31 )

(01 16u +(a 2 )j1duj-1 + (03)69'j + (04)j6#-J..i + (05)ja5 j + (06)ij6 1~ (1d)j

Here for convenience we have dropped the superscripts i ,n and have defined

(sk)j k =B~ 1, 1u 2. ... h i6)

= -8 a- +tU i/h~ (*i- -ln

= (S3)n

=s ) /a s) = - 1Ih-Cg/h'

and (ok)j (k =1,2, .. ,6)

* -i1)l)+ L rj

041 [(T')~ + (T') i1ln]
3 5j 2 + 1 i-, 4)j 3-1,

Cl(ui i- ~n + Fi -Ij-

i- i-

2 ik i-1,n YL i-,n+L

(6)j n 2 (u- - Uj h. i- - V/,

The terms denoted by (rk)j (k =1, 2, 3, 4) are defined by:

12



(r3)j 0 0

(r~~~4)J-1 "J-I $ hu.

.- ,n u iCi 0

(r, j n3 - [2n + a(u 2 )j- i {(u')J.1(6 _ -,, ,t. )

+ (u' )l-ln } -

AUI-I ,n, +i-I,n

(r 2) = n4 - Z~n j-12 + Ci {uJ-h (.J1 - tj -) +-it-A,_

, ) _ i-,n + i-l,n

2 + ( . 3/2 i-l,n - i +

L . + L _ - , | -

For j 1, we use the boundary conditions given by Eqs. (13), (14) and

(15) and first write them as:

u = wi(2.5 In l  + 5.2)

1x wV x

u 1  I x

Ti -w + Yl -l, t + CJ'Yl 'W-IY

After we write the difference equations and linearize the resulting nonlinear 
$

expressions we get

Su T2.5(ln y lw l + .-Y)6w, = (rl) 1  (32a)

-+ ( + w234) 234

-lW E9)6ul ( I (( - El) -Y(Ul - u13H]Wl (r2)1

(32b)

6 I + g7T6w , (r3 )l (32c)

where

13



= -I n i n-I + 2i -1n-I

E (w 2) n ( l- + (i12 i-,n- I
+2 11W

+E l 4 w I + W, I

Yl 2
1+ + ++E5  + / [2.51n(l.O + yl) + 5.1 - (3.39y + 5.1) exp (-0.37y1)] dyl2yi

97 :-2w 1 [I + l- E 34 _yiB n (w-) 1 3

1 1

(l l=wi[2.5 1n y l l  5.2] -u 1

1234, - 1 2 34 1
(r yul =  Yl Wl1  - E2 + 5.2 1  )

(r3)1  (w2) 234  234 4(P )n- u1 1234 1 E1234E

= - i ql + Ion (- 4 ylai +5 -3

t 1  _ I ul 1234 1 12342. . .. - l nw YlaiE 5 w1

For j = J, we use the usual boundary condition,

uj = u e

which in its linearized form is

d = (r4 )1 = 0 (33)

The equations (31) for 2 < j < J and the boundary conditions given by

Eqs. (32) and (33) form a linear system which is solved by the block-

elimination method discussed in Ref. [9].

14



IV. RESULTS AND DISCUSSION

To study the calculation of unsteady turbulent boundary layers with and

without flow reversal we have considered three separate test cases. The first

one has an external velocity distribution of the form

ue = 1 -cx(x x2)(t2  t3) 0 < x < 1, t > 0 (34)

where a is a positive constant. The same velocity distribution was recently

used by Cebeci [1] for laminar flows in order to study the computation of

unsteady laminar flows with flow reversal using the solution procedure described

in the previous section and to see whether there is a singularity associated

with such flows.

In performing calculations for this case and for the others considered

here, care must be taken in generating the initial conditions in the (t,y)

and (x,y) planes at some distance, say x = xo. For a laminar flow if

x0 = 0, the initial velocity profile for the velocity distribution given by

Eq. (34) can be taken as Blasius and there is no difficulty about computing

the solution in x > 0 since the initial boundary layer is of zero thickness.

If xo ' 0, we can take

Ue 1-i~x0  2 2 3 Oxxu I - o -x (t2 _ t)  0 < x < xo

but then at x = x0  there is a discontinuity in the pressure gradient. Since

it acts on an already-established boundary layer, the initial response is

inviscid leading formally to a velocity slip and hence a subboundary layer at

the wall. The treatment of the boundary layer is then rather subtle (see Ref.

[10]) but if we are not too concerned with the details of the solution near

x = xo , which is the case here, a convenient procedure would be to write

Eq. (34) as

ue = 1 -cF[(x - xo)/a](x - x 2)(t - t ) (35)

where F is a smooth function which vanishes if x < x0  and is unity if

x x > a. For example. we can take F(s) = sin(ws/2) 0 <s < 1, and

a =0.06 with ten stations between x = x0  and x = x0 + a. A similar dif-

ficulty would occur at t = 0 if t2  in Eq. (34) were replaced by t since

the boundary layer is well established at t = 0.

15



Figures 3 and 4 show the results for the turbulent flow calculations with

the CS model for the test case given by Eq. (35) with a = 40 and a unit

Reynolds number uo/v = 2.2 x 106/m. The results shown in Fig. 3 were obtained

by using different expressions for A; those shown by circles were obtained

with Eq. (7), and those shown by solid lines with Eq. (7) written as

A = 26'1" (36)
P max

As can be seen, both expressions give nearly the same results.

The results in Fig. 4, as in laminar flows, exhibit no signs of singular-

ity for all calculated values of t. This is in contrast to the findings of

Patel and Nash [11]. Again, as in laminar flows (3], we see the familiar

rapid thickening of the boundary layer in the reversed flow region. If it

had not been for this, the calculations would have been computed for greater

values of t than those considered here.

The two other test cases considered here correspond to Cases 4 and 5,

as reported by Carr [121. Case 4 is for unsteady Howarth flow. It starts

from a well-established steady flat-plate flow, on which a linear decelera-

tion of ue is imposed at t = 0. The external velocity distribution is

given by

ue = 1 -W(x - 1.24)t 1.24 < x < 4.69 (37)

where W is a constant equal to 2.4/3.45 sec -m - . The flow was assumed to

be steady up to x = 1.24m; the velocity distribution Eq. (37) was then

imposed as a function of x and t. This test case differs from the previous

one in that, once the flow separates, it does not reattach. For this reason,

the calculations can only be continued as far as the station where the flow

reversal first occurs. The initial velocity profile at x = 1.24 and for

all time correspond to a flat-plate profile with a momentum thickness Reynolds

number (Re ) of 4860, and local skin-friction coefficient cf of 2.8 x 10- .

As in the previous test case, we introduce a function F1  so that at

x = 1.24, du e/dx = 0. Since we also want the solutions at t = 0 to cor-

respond to steady-state solutions, we introduce another function F2  in order

to set aue/at - 0. With these functions, Eq. (37) then becomes
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Figure 3. Local skin-friction variation with x for various values of z.
Solid lines denote the calculations made by (29) and circles by (8).
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Ue I l - 1 FF2 (x - 1.24)t (38)

where

F1 = sin (x .24), F2  sin -

Figures 5, 6 and 7 show the calculated local skin-friction coefficient
cf9 the shape factor H and the momentum thickness Reynolds number R for

this test case. The calculations were done by using both CS and BF models;

the results shown by solid lines refer to the predictions of the CS model and

those shown by circles refer to the predictions of the BF model.

As seen from these three figures, there is essentially no difference

between the predictions of both models. Although there is some discrepancy

in the shape factor pred~ctions, this does not seem to be too significant.

t

2 0.040 -W () 0 0 0 0 0 0

0.04

cf x0- 10 l 0

0

® BF MODEL
0 CS MODEL

1.0 2.0 3.0 4.0 5.0
x

Figure 5. Computed local skin-friction distribution for test case 4.
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0.08
1.0~ _ 0 0 00 00 0 0 0

H0.12 0 0 0 0 0 0

1.0 ~ B MODEL 0 0 0 0

1.0- CS MODEL

123 4 5

Figure 6. Computed shape factor distribution for test case 4.
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0
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0

0.1

01 23 4 5xI
rigure 7. Computed momentum-thickness Reynolds number for test case 4.
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According to the predictions of the CS model, which also has the capabil-

ity of predicting unsteady boundary layers with flow reversal, the wall shear

vanishes first around t , 0.22, x = 4.69. Since the computation of boundary

layers for values of x in the range 1.24 < x < 4.61 for t > 0.22 depends

on the specification of a velocity profile at x = 4.69, we generate such a

profile by assuming it is given by the extrapolation of two velocity profiles

computed fo.r x < 4.69. This procedure in which the extrapolated station serves

as a downstream boundary condition, allows the calculations to be continued in

the negative wall shear region as shown in Fig. 8.

The third case considered in our study corresponds to Case 5 in ref. [12],

which in a way resembles the external velocity distribution in Eq. (34). It

is given by

Ue = 1 + 1A2 + (Bt)2 [-o]20 [A2 + (B~ot) 2  (39)

where A = 0.05, B = 3.4 sec -1 , = (x - 1.24)/3.45 and the range of x

values are limited to 1.24 < x < 4.69. As before, the initial velocity pro-

files at x = 1.24 for all t correspond to a steady flat-plate flow with

Re = 4860, cf = 2.89 x 10- 3. We again modify Eq. (39) to avoid the dis-

continuity in the pressure gradient. This time we multiply the right-hand

side of Eq. (39) by F1  used in Eq. (38).

4.0

t

0.0
3.0

..00
002 .02.3. • 5.

-1.0 0.38

Figure 8. Variation of wall-shear parameter f" with distance as a function

of time for test case 4.
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Figures 9 and 10 show the calculated local skin-friction coefficient cf

and the momentum thickness Reynolds number Re for this test case. Again

we present the predictions of both turbulence models. Figure 11 shows the

calculated velocity profiles for several t and x-stations. As is seen

from these figures, the predictions of both turbulence models are the same

for all practical purposes.

Figure 12 shows the variation of wall shear parameter f" as a function
w

of x and t, and Figure 13 shows the calculated velocity profiles, includ-

ing the regions in which there is flow reversal across the boundary layer.

These computations which are done by using the CS model provide confirmation

of the general trends in test case 4, namely that as in laminar flows,

the unsteady turbulent boundary layers thicken rapidly with increasing flow

reversal. A new feature however is the dip in the graphs of f" near
w

x = 2.5 which develops as t increases towards 0.40. It is possible that a

singularity occurs in the solution at a later time as many authors have sug-

gested is the case for laminar boundary layers. The most cogent argument in

favor of this phenomenon has been advanced by Shen [13] but we note that

the most definite sign of its occurrence appeared in his graphs of displacement

thickness which showed spikey characteristics. Here the displacement thickness

seems to be fairly smooth but the skin friction becomes spikey.
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Figure 12. Variation of wall shear parameter fw with distance as a
function of time for test case 5.
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Figure 13. Calculated velocity profiles including flow reversal by the
CS models for test case 5.
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V. CONCLUDING REMARKS

Based on the studies conducted in this report, we observe that:

1. The numerical solution of unsteady laminar and turbulent boundary

layers including the flow reversal across the layer can be cbtained

quite satisfactorily for a given pressure distribution. A combina-

tion of both regular and zig-zag box schemes are shown to yield

accurate results for unsteady boundary layers.

2. Whether the unsteady boundary-layer equations for laminar and turbu-

lent flows are singular for a given pressure distribution still

remains to be investigated. The results for test case 5 indicate

that at large times there is a puzzling "kink" in the wall shear

parameter, f; this may be due to a singularity or it may be due

to a numerical problem. Recent studies conducted by Cebeci [14] and

van Dommelen and Shen [15] for a circular cylinder started

impulsively from rest indicate that at large times, t = 1.25 or

more, there appears to be a singularity in 6* around * = 1200.

However, these calculations do not indicate any puzzling behavior

in thevall shear parameter near "singularity;" the f"-values

are smooth and well behaved for these and larger times. On the

other hand, examining the 6*-results for test case 5, we find that

while there is an abnormal behavior in f" at large times, thew
corresponding S*-values are smooth and well behaved, a trend which

is opposite to that for a circular cylinder.

3. A comparison of the predictions of two turbulence models, namely,

CS and BF models indicate that for attached flows, both models

yield almost identical results. This is also true for flows

which are sufficiently strong in pressure gradient to cause flow

reversal across the layer.
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VII. DESCRIPTION OF THE COMPUTER PROGRAM WHICH USES THE CS MODEL

Input

Essentially the Input to the computer program consists of four types of

cards. Card I contains the title of the flow problem under consideration.

Card 2 requires the following information to be specified.

NXT Total number of t-stations to be calculated

NZT Total number of x-stations to be calculated

NTR x-station where transition begins. If the initial velocity

profile is for turbulent flows, then NTR=I. If flow is all

laminar, set NTR>NZT.

IBDY Specifies whether the flow at x=O starts as a flat-plate

flow or as a stagnation-point flow.

=1 flat-plate flow

=2 stagnation-point flow

RL Free-stream Reynolds number, u L/v.

IPRNT Controls the print output

=1 prints out only the boundary-layer parameters 6*,e, cf,

R6 ,, Reg H and external velocity distribution.

=2 prints out profiles as well as the boundary-layer

parameters and external velocity field.

DETA(l) and VGP are the nonuniform grid parameters that control the spacing

across the layer. The grid used in this report is a reometric progression with

the property that the ratio of lengths of any two adjacent intervals is a

constant; that is, Anj = KAnj 1 . The distance to the j-th line is given by

the following formula:

A = h(KJ - )/(K - 1) K > 1

There are two parameters in this equation: hl , the length of the first step,

and K, the ratio of two successive steps. The total number of points J

can be calculated from the following formula:

ln~l + (K-l)(n e/hI )]
J= 

In K
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In the computer program which embodies the present solution method, h and

K are chosen with typical values, for moderate Reynolds numbers, of 0.01 and

1.3, respectively. In general, approximately 50 grid nodes across the boundary

layer are sufficient to represent laminar and turbulent boundary-layer flows.

The chosen values of h, and K must be such that the formula which generates

the number og rid nodes according to a given or estimated ne, i.e. Eq. ( )

does not allow J to exceed 101. Figure 14 is provided, therefore, to provide

guidance in the selection of J.

1.24
I.2 J = 30 40 50

1.20

1.16

K

1.12

1.08

1 .04

1.0 1 10 1002 1000 G(,

ne/h1 x 10-

Figure 14. Variation of K with hI  for different e -values.

CF and RTH are the local cf and Re values which are used to start the

turbulent flow calculations. The initial velocity profile is qenerated by

using the formulas proposed by Granville (see ref. 9)

R+ - 1[In y + c + n(l - coswn) + (n2- n )1 (40)
U KT

From Eq. (40) and from the definitions of 6* and 6, it can be shown that

S* I'Ue - u u un)()1e
I u U e dn ICU e (Ty (41)
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81

f !L IL 2 + d,) - e + + 2l1 + - Si( )) + 1.52
T e ue KUe [ 9 7

1 7+ Tg-y .- 0.122925n] (42)

From Eq. (42), taking Si(nl) = 1.8519, we can also write

R - (.9123016 + 3.05603 + 1.5n12

KU e 'Ud

Evaluating Eq. (40) at n = 1, we get

Ue [In + c + 2n (43)

For a given value of cf and R., we can solve Eqs. (42) and (43) for 6

and P and then substitute them into Eqs. (40) and (41), thus obtaining

u-profile.

Cards 3 and 4 read in the t and x stations, respectively. The

present computer program specifies the external velocity distribution by a

formula and computes the dimensionless pressure gradient parameters analytically

as is shown in the listing which follows this section. The test case in the

computer listing is for case 4 of ref. [12].

Output

Depending on the IPRNT, the computer program prints out the profiles

f, f', f" and b as a function of the similarity variable n and grid

parameter j together with a parameter KALC(J). Here KALC(J) = 0 when

we use the standard box and = 1 when we use the zig-zag box.

ETA n

F fl

U V

V f "

B b (=l + Em ) equals 1.0 for laminar flowsm
The output also includes displacement thickness 6*, momentum thickness 8,

local skin-friction coefficient cf, Reynolds numbers based on 6* and e,
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that is, R6., Re and shape factor H. The definition of these parameters

and their computer notation is

DELSTR 6* - f (1 - U/ue )dy

THETA 0 = / U/uel - U/Ue)dy
0e

CF cf = 2Tw/PUo

RDELST R* = S*u /v
6 0

RTHETA Re = Ou /V

RZ Rz 
= zU0/V

H 6*/e

In terms of transformed variables, 6*, e and cf can be written as

6= z [.-f./f,®

z

6 = z %.' (1 - f)T

Cf = 2 w-

z
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Cr4mrN /SL Cfl NYT,NZTr,NX,NZ,NP,NT,! TMAX!BUYNP7 9 Z G, ITUP*ET Act
1VGP At 101 ErA (1011),rlTA (101)

1 IF41O1,81)

I R(10118112)
CION /PQtNT/ 1PQNT
VommmlT D / 1, TEX( P1)

nTM'FNSIrk' LTH4T b (81)

c car( 5, 101) NXPRNT
M0

,'MAX 10

5 M X =1

m =0

rAU~ TplrU-
id( !TTMF *r". I Gr r'f
rt"L IVP

c~. 10
6 fY' 7 J = I

rfJ. l.2)=Pr(J,?)

7 "N A IU
11~ Ic ( ICI% Lr. 2 bt'n. IT!MS r(.'. 2) Wr-TT(e,1101 X~.(~

!c I 7(CQ l 0 )rn-7)1

TC N NY .:'Q. 1 17 *F0. 1 ro TO QQ

!r- 4 K,7 .=O. 1 A~l M~Y r.T I ) (C TrO qO

=0
70

f P T 1) Co

A''L 1 ~ V3 F11 !rTrIrLLen

r"F'i rrQ r--VEQpIFNr
'rq 7 *rr. PNITQ ) rCf TC% 7f

?CI~~IEL~f)) ~T*C.OOCI)C-C -1720
,, ,,Po

tL 'N



I V( 1,N,7 ,?21+n.5*rlFt V III ) . LT. 0.02) GO) TO 80
rfl 'rn 20

~ /U(N ,NZ,?-l.O .LT. 0.0015
IPNf). LlPC(VIN'P.N?,2)) Ac~. 0.001) Gc rn ryo
! f I rQriWr. C2) (-,f-TO CC

!'Wo = 2(Ol~

C4L L C-9f7WTH LL I

TI NYr r,=. NJXPQNr I 7PR~' 0
'F ( P1mc * 2 1 GO r 10

Tr -rmrE .=-3. 2 WA . NZ .FO. 3 1 rC -0 c6
!(IT!C. I M c rO TO 10

A..3) GOr !f q2

crf j , 3)=c(J* ?o21

!V1( J *3)=[V(J 39 32)

rP(J 3)=Fk (J ,2)

0- 03 J=!.kNpr
rc(Jm) = (JM,')

\/V(J.M) =V(J,M,?)

RP(JAM) P(J,m,2)

TcI M t . 3 ) rO rr l0

II- L r FPrr ( PT, r-r. t1K. vV', P, NN'Z)

S10
96 M = 1

''~ 97 J I.1NDT

IIUfj M I (jr (j I

VVEJ.V) =VcfJ)

97 PP(J.M) =OrMJ

9 P = 1.?P

c~ r .mI J ( 2

liifj mI= U(JK o2)
VV~~ml= VfJK,2)

%!7 = 1

TTkc= T'lml+l
T~ r- TP %I - .LT 2 TAO ~1M .or 1) z WTIT(6 1101 'X ,NZ 9X NX 9

Z'(Y'7)
r LL r I ITUT

34



G(" 'V 1.0

100 r- (I1HO, 16X.32HV~rr-P'rI LN S FXCFEDcr' ITMAX AT N7=9,T )

li :0 MA " ( 1HO94HNX =,I3,15X,4HNZ =.13,rX,IHX =.FlO.5,5X93H7 =,9 13.5)
120 C-lm&T( 1HO92X,'10OUNflACY LAYFP HAS GpflWNO)
121 rnQM& (1HO,5X95HNX = .13,5X,8HXtNX) = 9F10.5,5X.5HXI = 10.5

35



CURC rlUT! NP COFFG (I T)
OMMlN /FL Cn / N XT,NZT, .NX, NZNP 9NTP,T TVA XIPDY NPT , IZ IG, !TtlJFR, ET AF1

I ~~~VCp A (101 ) FTA (101)90E TA (101 )

tjr-( 101 q81 )

P1( 101) iR2 (1M-P31( 101)
CfMMCN /PL CP/ r)ELV(l1011)r-(101 81 921 U(101 81,2),V (101 98I, 2),

9(10198192)
rrMMfN / GZr,/ KALC (101)
~rCAMfN /SO Ve / NZIG,NZ!GS

1,J(NPsKY7,2) = UE(NIX,NZ) / UO(NZ)
[InB 0 .5*(UO(NZ)+UO(NZ-I))
Tj ( IT .GT. 1 tAND. NZIGS FQO. 1 G C ""0 6
NZ!lG = 0
K.ALC( 1) =0
0) 4 J=2,NP

tq= 0.5*(U(J.NZ,21+U(J-I.NZ9?1)
T!tUl .GF. 0.0) GOl TO 4
W7IC, = 1
KAL C( 11=1
eln Tr 0 (

4 rokNT NIJF*
6 !OFLY = X (fNX)- X ( X- 1

rl I*Z = Z(N7l-Z(NZ-l)
7R = 0 .5* (Z (N Z) +Z(N Z- 1)

rEL = Z9/rELZ
BR:L ' = 7B 1( ELX) /1109
r rL 2 = 0.5*CCL
rcL4 =0 .25* C FL

P I = 0. *P U(NZ)

v ip = 0 .5* (P I( N 7) +P 1 (NZ-1 I
p lq = 0 . 5*(P 2(NZ) +P2 (NZ7- 1)

P38 0.25*(P3(NX,NZ)+P3(NX-1,NZ)+P3(NX,NZ-1)+P3(Nx-l,N? -1))
MlJ SDZ =0.25*l(U(ND,NZ,2)**2-U(NP,NZ-1,2I **2
I ~+UINPNZ,1)**2-U(NP,NZ-1,1)**2)/fDELZ

rDojry =0. 5*( U (NP , N 72) -U(NP qNZ *1) +
I MUN P 9N Z- 1 ,2)- U( NP 9NZ-1 , 11) )/DFlLX

DI ZR* ( USD +U0 X /OB ) + P28* (U (NP 9NZ 2 ) **2+U (INO, NZ 11)**2
1 +IJNP , NZ- 1 ,2) **2+U (NP , NZ-1 9 1) **2) *0. 25

! F(NI 7 rQ0. NZT) GO Tr 10
N17P I = N!Z+l

cl= Z(NZ)*( (7(NZP1)-Z(N?))/(Z(NZP1)-Z(N7-))tIELZ
c 1H = 0. 5 *cl

F2 = Z(NZllPELX/UO(NZ)
C3 Z(N7)*r)FL.Z/(Z(NZPl)-Z(NZ-1)) /( Z(NZ)-7(NZP1))

0397 = 0.5*( P3(NX(,NZ)+P3(NX-1,NZ) )
nuOXy = ( U(ND NZ ,?)-U(NP NZ, 11 frELX
DU 7 = 0.5*((U!NP,NZ.2)**2-U(NP,NZ-1,2)**2)*'1.

+( IJ(NP ,NZ , 1)** 2-tJ (NP ,NZP1,vl) **2) *F'A)
D3R Zt NZ )* (OUSP 7/Z (N71+DUL)XfUC (NZ) I +

02( NZ )* (UtMP NZ ,2) **2*U ('\P , 91)**2) *0. 5
10 ONT TNtIE

On~ 50C J=2,NP
36



0. 5*(( U,!'Z.2)F W -1 ,N792) )
r R = O.5*(F(iJ,NZ.2)*V(J,NZ,2)+F(J-1 ,NZ,2)*V(J-1,NZ,2))
tn = 0.5*(U(J.NZ,?l+U(J-l,NZ,2))

tflq = 0.5*(IJ(JN?. ?I**2+U(J-1,NZ,2)**2)
tic, ? =O.r,*( M J.NZ-1 .2)+U(J-1 K'Z-1 .211

VR = 0.5*(V(J,NZ,2J+V(J-1,NZ,23)

CP4 = 0.5*(F(J,J?,1)+C (J-1,NZ,1))
1Yz A4 = 0.5*(IJ( . N7 ,1)**2+U(J-1 ,NZ,1 )**21
T C( "17 CO. k'Z') GO Tr 20
!r ( N7!r( CO. 1 ) r.C Tr) ?c

'0 5:VJ? = F(JN7.)*V(JNZ,1)+C-(J,N7-1,1)*V(J,N?-1,1)+
I C(JoN?-1,2)*V(JNZ-1 .2)

=vi I = F-(,I-1d.Z.1)*V(J-1,NZ,1)+F(J-1,NZ-1,U)*V(J-1,NZ-1.I)+
r (SJ-1 ANZ-1 92)* V (J-1 ,NZ-1 v2)

=ryl 0 2*( ( ,J 19 )r J- , Z I l +-J N - . ) F J 1 N ?))
=VP234= 0 . 9*fC Vj ?+C Vj I)

107= 0 .!* ( MJ JN Z- 11.2)**2+ L J-1 9N -1 921**2 1
0 0.5*( J NZ- 1 , I)**2+ U J- 1,NZ--l1 1) **2)

11m 0.5*((ISB 7+(.15831
L 0.2F* ( UfJ.?\Z- I, I)+U(J-1.N7-1 ,il+U(J,NZ I ) +U(J-1P'7 

9 1)
fj = 1J(J NZ, 1)**2+tJ(J NZ-l 91) **2+U(JN'Z-l ,2**2

=l~ 11(J- 1.NZ . 1)**?-+U( J-1 K'-1l) **24U (J-1, NZ-1 , 2)
11"'?34= 0. 9* (IJSJ?+IJSJll
vii. = V(J- 1.0\7, 1)+V(J- I NZ-1 91]+\/(J-1 N7-1,2)
V' 12 =V(J ,.'? , l)+\'(J . :Z-1. 'l) +V( JdN'7-1 .21

VP"4 =0.5 ( VJ 2+ VJ 1)
RVJ I -2 ~(J- 1,N'?.1) *V(J- IN7,1) +P (J-1 ,N7-1 1) *V (J-1 ,N7-1 -I 1+

A (J- I*N 7-1 *?)* V (J-1 N!Z-1 92)
RVJ 2 = P(J.,M7, I)*V(J.N\'7.U)+B(J.sZ-1 .1) *V(JN7-I 91)+

q U ,NZ- ,2)*V(J,NZ-1 .2)

tMi4 = 1JR2-2.0*rtJPl
'M P = ( P I . 2 - 0 VJ* / r T & J -1

raj= CMIl*CcL-0. 5*r*V24*rm4+2.0*PCLM*C-M7-CM8-PI8*rVP234
I + O2RI'UJZP234-4.0*P31

r r-=r IC1ENT<. =r THF DcrLLAP PrX.
eljj 9(J.Nj17,?)/DcAi(j-1)+P1PH*P(J,Z,2)+EL4*(rB+Cm4)

11(JI= DlPH*V(J.'NZ.)+r% -4*(VB+VIE234)
"4( i nIPH-*VU-1,r'7,2)+rE-L4*(VB+VB234)

c 6 1J ) =-I029+' EL )*Uf J- INZ o ) -PF LM

+('m4* V ) -RFLhI*2. 0*LUP
i~ai (j )=Q

C.( 'n 40

cc ?' = 0O.5* ( F (J N'Y- 1 2 1+C(J-1 N!Z-l.2 1
V A = 0.5*1 V(J.N7-1.?)+V(J-lqNZ-1 .2))
r-VA4 = 0.r,*(C-(JN7,1)*V(J.Z,1)+F(J-1,NZ,1)*V(J-I,N?.I))

11P6 =0 . 5f* ( MJ -N 7P 1 ,1I) +t'(J-1 ,N!PI 91 ))
r-6 = 0.5*(C(J.N7PI ,I)+F (i-I NZP1 .1))

= 0. 2r,* MJJ.117,1) +U( J-1 9 NZ I +I J NZP1 91.+U J-1 ,N7D01))
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VA46 = O.25*(V(J,NIZ,1)+V(J-1.,NZ,1)+V(J,NZP1.1)4VtJ-1,N7I1,1lI
DP V 4 = (6( J,N? v1)*V(JNZ,1)-B (J-1,NZ ,11i*V(J-1 .NZ1lV> A( J-I I

r2 = nqcFkV4+P 1(NZ)*VR4P2 (ND *tS;34+2.O*P39Z
r 3 = -C 2+7. O*C 1- 2. O*r2*U34

r r C r-F Ir IFNr Ffl THF ?!C,-ZAr, ACX,

~1( 10 = F ?,2 I P(-)+IHr JN )+lH(-Rc2
INJ) = -9 -1N rT J1)PlV - NZ92)+l* gr

J= PIH*V(J,NZ,2)+rlH*(VB+\IP2)
c4 J) =01 1H*V( J- INZ o2)+E IH* ( VI+VB2)

SI(J= -P2NNZ I*U( JP 1,2 )-FE2-F1*U (j NZ 92)
SffJ I = -P2f .7)*U(J-1,!',2)-E2-F1*U(J-1 PNZ,?)
02(J ) = C3(~B+IN)cPP(Z*St20E*1-l(S*

-V~k*FLB-VR2*FB+FR2*l)
K L r j =!
9?1D(J) = c(J-1.,N,2)-r(J,NZ,2)+W)F-TA(J-1)*IJP
~3J-1)=tl~j-!,NZ,2-U(J.NZ,2I+O)F7T.fJ-l)*VB

r, rIYjT TNIJF
!C ( I' .' O. I ) NZ!GS = NZIG
Q 3(K"P) 0 .0

r H 1) =0.0

r 2 ~1 ) .0
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r0mmV'N/I LCO / NXTN7T,NX,NZ,NP,NTR,!?MAX,!BOtY,NP%'IZIG, !'11RS, '?AF:,I ~VcP9(101) ETA (101 qt)ETAf1OI)

I UC(101.81)

P(l01,P1.2)

nUUFM~STr'N FOV( 101)
r MFM F TN Thf l0t)

GAMTQ 1.0
IF f FrUOR *'Jr. 0 r0TC 12

linT =0.0
~jjrI l.0/UrfNX,NTrF-1)
f)C 10 !=N!PNZ

If iI '+( UP I+(UC2) *0. 5* (Z( I Z ( I-1 I
10 Ur,1 = Un2

r.r 9 *U N iZI* I (UL'( N'XpNT R-1)*Z N'o.- *1 .34
cy P- = r, C*c I-*'.0. 6* (Z(?WIZ)- 7 tNTP -1) )*U'!
'F f XPT Lr-. 10.0 1 G~mTQ r 1.0 - FXPf-FXPT)

12 cUm I = 0.0
F I = q,(1.NZ.2)IU(t 'P,NI7,2I*f1.0-U(1 .NZ,2IfU(NPNZ,211
'Y' 11 J=29MP
C? = t(J,N, 2) fUftIPNZ,2)* fl.0-U(jN7,2) IIJfNO),NZ,2) )

Ll= NXN SQ ?N)TfOL'*P0L) )S

Tr Pr Lz. 4215.0 1 C,( TC 14
'FP c7 CGT. 6000.0 ) rOf "1 1r)

13T 0.55*(1.O-cXPf-0 ?43*5QP'(XPj)-2.qP*XP!))

14 P I 0.0
r 'rn 20

l1 'i 0 . ;5

n PL~ G 0
7 SOO' ( 10I Z (ZN7) *0 L)

074 = $Q' (D 7 7
VMAX Vt V(,NZ.2)
n~ 3 C J = 2,NO
TF(A4RS(VIJ,M17,?I).G T.tpSf ~t.j)) VMAX= VfjNZ,2)

3fl rriN-NIjr
F'Vr 0.0 168*( l.55 M(I. C+PT ) 1*0Z2* (U (NO ,NZ,2) *ZA(NP) (NP.PZ,2 11

=1

OPLII1 = (P?(NIZ)/Q.Z4)*((Jr (t'XNZ)/UfNZ)**2*(1.0/ABSfVMAX1**l.5)
yn 1z 4*MTA (J)* SOP T(AP 5( VmAX) *f 1.O-11.8*PLIIS) U/26.0

cL =1.0

Ir-(V'IA .LT. 4.0) FL = (;.C-FYP(-'ICAII**2
S-I)VI =0.16*Q ?2*ABS(VIJ ,NZ,?) )*FL*GAM'R*E'&(J)**2
ctF"~VT .LT. FnVC) rr 1) IG0
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100 rrV( j)- F"V1
'AF(J.Lc:.2) GO'rn 110
!F(cr0VfJ).GT.fl)V(J-1)) C0110

r'*V( J I PrV (J- 1 )+(FV J-) Fr% V (J-2) 1*VG p

FL G = 1
110 R(J,NZ,?)= 1.0+E')V(J)

1 = J+1

m'om 1 = Np- I

'Pt 1) = 0( l.N7 9 2)
n15C J = 2.NO

l~(j I = RJZ?* fJN,)0.

~' 170 J= ?,Nlom1

rnrlr rp NIJI
R (4 N, NZ , ? )=9k(NDmI N Z , 7)
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SURDUTMFJ GQ~r
Ir'MM*IN FIL CO / N X T ANZ' .N XN Z NP9NTP , ITMA X ,IPTYV, NP , IZ IG, ITU PB. FT AE

VGP, A(10)U C11)tETA 1101)

1ct(VGP-1*0) ALF. 0.0011 GO r' 10
%1 ILOG( (EAE/fETA())*VGP-1.0)+1.0)/ALICG(VGP) +1.0001

DFP1111) = I:~*VP10 (VP*N-110
r(r 'fl 20'
m r = r-' F", ETA( 1) + !.Cool

20 TCN .L'r . 10 1) 110 ' ~0
W !''-( f), 50

';0 rTA( 1?= 0.0
n14C J=29 101

afif) = 0.5',rTMJ-1)

0 r0''1 1-".' ( -I ) MF F~TA l( -.- IFr.M'RMNt0
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V(*,P A( 101) E7A (101) ,t'ETA (101)

1R41101,8192)

!- NP .GT. NPr ) NP=f'PT
N!Pmtx =KI

-IC J =~ j P1,NM~X
!IJNZ.2h U(NPf,NZ,2)*eTA()FA(NPCf))+F (NPC,NZ,2)

V(i,NJZ,21 1.
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'cUqF01TINF TVON7
rnm mrN/BLCO./ NXTtNZ~qNXoN79NP N'TP, ITMhX,!IPDVNPr I Z Ir,, FUB. F-A;-:

1 ~~VGP 04 (101) ETA101),DETA (101)

UJE( 101 981)

COM N PLP CRL( 101~,)P(0 S )U11R2)V1198,2.

R1(101) 9R2(I101) ,R3(101 )

R t. = 0.0
1 ("4Z r1-r. 11 BEL = 0.5* (Z(KIZI+?(NZ-1) /(Z(N7)-Z (Z-ll I
olp = PI(NZ)+.FL
020 = P2(N7)PFL
nn0 3C J =2, VP

r T - -IN IT ~I~ rl AVc-RAG~f) QUANTITIES
cp = 0.5*(F(J9NZ,2)+F(J-1,NZ,2))
1113 = 0. 5*ftj(JNZ,2)+U(J-1 ,NZo2))
VP = 0.5*(V(J,N7,2)+V(J-1vNZs2))
F-VQ = 0Ar*(r-(J,NZ,2)*V(JNZ,2)+F(J-1 ,N?,2)*V(J-1,NZ,2))

tc = 0.5*(U(J.NZ, 2)**2+U(J-1 ,Nl,21**2)
nQV= I FqJ,NZ.2)*VfJ4 IZ92)-B(J- ,NZ,2)*V(J-1,NZ,2flff)ETA(J-1)

rFR =0.0
COS~ = 0.0
1-Vp = 0.0

qg = -P2(NZ)
r'L ' 1 20

13 CA = 0.5*(I)(J,NZ-192)+F(J-1,NZ-1,2))
rP = 0.5*(V(J,NZ-1,2)+UIJ-INZ-1,2))
CVB= 0.5*(V-(J,NZ-1,2)*V(J-,N-12))FJ1,Z1?*VJlN-9)

CJP= 0.5*(U(J,NZh'l,2)**2+U(J-1,NZ-1q2)**2)

DFTA(J-1)
ri A = C FP 9V+P 1(N Z1) *f:FVP-P2 (NZ-1) *CUS B+P3 ( NX , NZI1)

fpR = -P 3(N X.N7) +BEL* (CF VO-C US)-C LB

CrrFF IC FhlTF OF THE Y FE~~~ tCMEKTUM IFOUATYCN
20 1( J) R (J 9N7 -p21 PETA (JI)+ (PJO*F (J , Zp2 IBEL*Cr8) *0 .5

S?(IJ) = -B( - I NZ 92)/DFA (-1+ (P P*F (-1NZ2 )-BEL*r:B) *0 5
S3(J ) = 0.5*(PlP*V(J,NZt2)+0EL*CVB)
'z4(J ) = 0.5*(PlP*V(J-1,NZ,2)+BFL*CVF)
I-r(J ) = -P 2P* JJ, N Zp2)

S6(J) P -Pp*U( J- 1,-pN 7,2)

(7 n~TN!TrONS OF Qj
0 1() j F-jJ- J,NZ 21-F (JNZ ,2)+f)E TA (J-1) *UB
c3(J-1)=U(J-1.NZ,2)-U(J,NZ,2)+DETA(J-1)*VR
02(J) = rQ-(EPBV.PP*PB-P2P*US-BFL*(CFeP*Vp-CVR*FBfl

30 rNT Tkltir
q (1)= 0.0

Q 2(1) -0.0
0 3(Np )= 0.0
0 ErURN
FN D)
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-1j;1n(r-Iri INPUT

Vro ,4 I101) (1011 rC:Tf. (!je~lI

JC101, 9112

rrmmr'P% RL r/ 0 t, F, P 'r
nMMI PO hl-/ !PQNT

rrfAMCN A Vc / 7 ' I E NYTO,NTC ir( lol,?n0(g I

01 3141591
'kp 1.01

I 'M 6X - 10
-TA c 8 .0

IN-c 2
PL 1.0

!cfT'TF rOQ. I)CO Tr 6o0

At 7 =N 7 Vr)

I)r' 40 1=1.AdXT

On' 42 !=1,NT
4? 7( T)=?Zf! )

,n rf A

60 !'1JO P =0
CP r, ~ 27C? T I"L r

!- ( P zQ . 1 1 ITUjPQ

F C 9 XCI = 191 NT

KI frl =N XZT

011 70 !=l.NX-

nf' 72 !1,.K#'
7? 'fD(!)=7(I)

71 = 7(1 U
VIrt 74 =.

71, 7(1') m7-.1 3

NX' I~ =1KX

XfI I = X(! * '3. 0
10 r r'NT TNI Ic

WO 0 - 6, 340) A.1XT jZT,N1'r IPr)Y

120 '1,r 14C I = 1,NZT
fI1 1*11=1.0

0rtt-,icF rc oI tN T PA F APCTF P P S T r-A r)Y TA
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4

0 21T 11 0.0

!40 WJ'(1 I 1 .0

,AMPLF TF eT CASr- 4
')r' 150 K = ,.4XT

1 jNr 1.
IN 0.0

F~~T 1.0

~C(?!) f~.1. 34) GO 'fl 14?
x "'N(P!/2.0*(( Z(!I.24)/0.j)

D= '12.010- *C0) fPY 12. 0*(I Z (I) -1.24) /0. 1)
141 T F(IX K).. 1.98) GO 'M 145

cll= 5If(Plf2.0*(XfK)/1.C;8))
,- VI/ I. q8 / 2.0* C r( P!1 12 .0*( X (K) /1. 9 8)

145 licnK.!) I 1.0-PI*X(K)*(711)-l.24)*FUINC*FUNT
t~r) X P -A * X (K )* F ON C-S A * X(V) * (Z( I) - 1. 2 4) * D : 1Fl, JNT

mu : , -A * ( 7( I I1. 2 41* FUNC I* F Ur+nrO* (-S A * (Z f I I. 24) *X KIFU NC)

150 r~N'r IN11c
160 W 0 Tr (6. 32'1 NIXT

WRIT (69 326) ( X(T)gT=19NXT
WR jTc ( 69 324) N7T
WO 1rr ( 6. 326) Z!),=,ZT)

0 F'UQN

760 r-Orm Ar( 6!5,9r10.0)
270 cflOMAT( 20A4)
290 cr)RMAT( Sr10.0)
' 22 r-r' QMA T (/f/HO,27HTAPLF rr IKPLT X -PCM 1 To 13/)
324 r-r0m i ( JH0,27HT8PLF OF INPUT 7 FPCM 1 TO 131
326 c00M IT (JH , 'AX, 12r-10.5
330 CC0 M 17( 1HO, 206 41
340 er)QMAT( f//1IHO,17H** CASP DATA /1HO,3X,6HNXr = 913 ,14X 96HNZT  ,!r

1 1 4X ,6HNITQ =913/ 4X,6HIRDY =913 914X96HIZIG =t13,l4X.
? 6HITUQI3=913)

347 rlQPAAT( 1H .3X,6HRL =,El4.e,3-X,6HOETAI=,Fl4.6,3X,6HVGD =,F14.61
i. 4X,6H(F =,F14.6,3X,6HQTFFT=,FI4.6

350 FPQMA'(1HO,3X96HBB =,F14.6,3X,6HBA ,E14.693 X*6 HSL =,14.6,

FI~ lX,6HZ0 =1 14. 6/)
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r 4 -A Mf,%t LC' LxT, tCfNN . #, r .K 1,' % IP y , N p, I., F' "e.
Vrn ,A(i 101,Th41Cl ) rF TA11011

I if 1 0 XI 0) ,7I1 3 ,L (81) F7 (8i) ,P ( l ,P2 ( 81 . rl[, I ).9i).
I ,Ir Il1 1,-0 1

e, v ,/At r D / " L VI 10 1) ,J (101, 1, ) Ut 0 ,l , V l 1, , .Q!ir lO,l.?3

Qf 101.PI.?l
"nV4 r)k'/ 'a L 'O f) PL ,r r- THr 'r

rn'4mrF € ct ?I M mr- ,NVTr ,NI7IC, X fV 0 ,7fr-fI
"TIACNCT " l,  Ull( 1011l, F f I l 1, E(1011 ,SHEtAIfIOlI
r,- - A ,D , ¢ rf?. 141 ,2t=, .4192.01
f-

!c I T"11IAC rr). 1 ) OCr ic p

S t 6Alklec Vo " L

"L ? = I
:"4AO(= 0.2=*Cicft(NP1

c J . N?,?)= 2 T&,4PQ* C Tt P 2* 0- 0. 'A 7p?
Ilf .J.'J7, 2 = C. * r' TP* (I. 0-c P 23
V j,.N 7? c T5 )J1 .I I !. C- TrAP?

(J.N7, 2= 1.0
r 7,4" INlic,

F'r!IO N

c 0 07 IC= ) Tel T ( 7 l

f- " 2  0. 5. "
COC P' 2= .FnQ ('C tcn 2)

'~~~n !"". " n2
Q Xr r-2 =  SOC 7* 'OC cr)2

VY = 0.I

= AN*A

r A-'2. 05 603* PLr 'A' = 1.,5*160 - +1l l2 *

ere4 = I. O /A N-C-a L0 I or r P -H C "
t I = Cc1+0.5*rr2*rr 4 C.2c*CC3*rC4**2

A12 = 0.*("r 2+CC 3*rC41
ah = 0.29*cr?

/1 V'JM = ALnrG(Yy)
cFr = YY-fAAlAA2*VY.PC,+AA?*YLOG**2)
n) c = I.0-(A A2+2. C*.A A3Vt 1 0)YY
r)VY = r-cr" /n F

vv = yy-ryy
rF# Y ' Y) .LT. 0. 0CC01) Gr Tr 20
T "  =46
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T" ! .L. 10 ) GO Tr 10

0 It S.* I r4A L r , iy y
009i "As r TW-'T1/yy

C'er v 0"EL TA /SOR7
I r I I-1 I P . r 1 W T TF (-t, 9 _15 ) P I F P VFL7"AF 7 A rc r Q rC

c r IP 0K z r 0 OISr X r: F?

CAI I tc10
"' "' J=i ,NO

rlrhfJ) rr'. rcG Ip) GO I ' 40
in,' r r.1~ !,j

Aln J-
rr i

r , - '%, tr 0 ot Q' LFC
r 77 'A NOr, I rTA I Np

r z 1-. ?/ .+* ( L 2)+CpTF**1.-" gPT*Z) ) z*y7*I1.-zz)
"V- = .c y

= ')*( .- V)
,r r, ~r yI.L . .O001 .('c . T .'r . [ CTr 7f)

7 ~ r IIIc rI

- rr -,.0 C ' r

17 " r L-'fT k* r t A rl Y)
~ Vf -%A' C)) I V",,Tl '. ! t "0* vF'AIJ) )**2

r r 1  .r, vo- Ir , C C

~II~ I

?-= r I IC C: 3 r. -r;-,Pl!

t. L = T 0r j ,* r r r 2 V - 1 *C.) ) C I N I + 0 1*F

":.J = r . kL (

- , A1 r. 0 )
1.4 r rJ2, ) .C ?-I(*t 'lC, ^11LuTT * Ila r' C)*'2)L

= l 7F .*f'*. 2 CC) r r 2 3f

T7 z ) . 01*Z-
(t G I I . 0 +  tj T", *Tm . FITA.-7J 1 2 )
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Ofl 120 J=Nrr-G?,NP
C~j= F4(j )

7? = F'tJ/FTA(NP)
120 r(J.W? =(+~c.K (ET J*( fr(rr2 AJ)-l O+C+Pjr-)-Fj*r IN(PI

1 *Z7)+E'YAJ*ZZ*ZZ*(l./3.-ZZ/4.))
130 f~n 14C J=1.,NP
140 tlIJ,I3?.21 IJ(J,NZ,2)/U(NPd'Z92)

V(NP,N4Z,2) =0.00010
CALL Ff) Y
0 ErtIN

----------------------------------------------------------- -- -- -- ----------- - -- -- ---

1 3H~r=,c14.6,3X,SIHQTHC:TA 1=,F14.6)
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IZtlPR)U1ThIlt OUTPUT
romi/PL rr/ NX-,N7TNX,NZ NIP, NOT , ITMAX,T FDyNPT. I Z IG, !TI)Fq, E- AF.

VGP, At 101),FIA (101) qfETA (101)

Ur ( 101 181)
7r1MfN/F~L C0 / DEL V( 1011) (I UCI 8192) ,U(101 981 ,21 ,VQ01.819 2 1

R(1019P1,2)

r('rfN IMMC, /RKLCFFCt

rF~rm-lh/ppN T / IPQNT
rvmmr'/ TNITP / N 9I1FX 81)

0117 ?,7 -

T C)( t NZ7 = r,

'IF f ~F' .Nr. 0 ) GO TO' F

L1?U( 230 1Jq=--'(J)r(J,KZ,2) tJ(JI7.2)gV(J.NZ.2)9RtJ9N7-2)9
KA.Lr (jI

WrT'r(f. 230 )(J,crtA(J),r(J, Z.2),U(J,N-7,7),V(J,N7,?),P(J,N7,2I.
X A Lr ( , J=NIP W72 , P I

MPK f 14 ) =N0
IF f "7 c-Q. I *4"ll". NTO .NF . I I r TC g0

I! = '100T( 7 (NI) / fPL*Ur(N7))
f)FL c'r= r 1*fr'ti(NP)- (NPNZ,?) ,L'fT\,N'7v2) 3

F =2?.0* V( 1 .N' Z ? I /SO~P 7 P L* UZ)* Z Z))*0.)c NX , NZ /JIVNZ )*?

I )rLcTLe NJ X ,f NXIN)* r" FL S TF* RL
qIMI 1 0.0

cl = Oif 1.NZ, 2) /U(NII ,'Z.2)*Q1. 0-HI ,NZ.21 /fI(NP,f\Z,2) I
on IC J=2, NO

C2 = M J K' Z7. 2) /U( MP N 7 ?)*1.-t( J , ,Z .2 ) /U (NO NZ ,2))

-14= S Um I+ I +r-2)*A J)

0 T1 H -TbN71 U NXN7 Hc

P -1 CTHC-t( NI I

H n EL S-Q/THr-Tt
HS W Z ) =w
'r c ( IFY-CP C-T. 0 .AN. N.Z r-C. K7 3 'O -ni~

T r- ITIUE .L7. 3) GO Tr~ ICC

Wr"r 6, 24? DPL S"-- HE7A rl:FrFfFLS TPH-A(NI 9H.
I ~Ue fN XqNI7)

100o Tr t NZ ceQ. NiTr ) Gfl 'To lc

! c T'I"C L-. 3) rf) 'n 140
!F( 1,1 L1'. N721 Gn Tn 14C
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+

rl, '120 J =1.N4PT

r-r-fJ ,N' = -fJ,NZ,2) /UP (NN17 1
110( J , N I Ul J .NZ ,2)/Lr-(N)(,N7)

\/\Id,,N V(JNZ,2)/U=iN)XN7)
120 RPI J vN =( J ,N Z , 2

I~124 J = I.NOT
'IF (UtJ.V7.2) .LT. 0. 1 r.C -r 130

124 r'147J T1,'U11
,7, -F 140

130 r) 71 = 7(NJ7r-fl)-7(NZ7-2)
MZ?= Z(Nl7T)-Z(ll7T-2)

r~r 134 J =1,NP?

-1 U(JJ.2)-UUfJ,.1)
'V V'(J.21-VV(J,lj
r= PP(J.2)-P9(J,l)

FNfJI= = r(J , I) +0Z2* Or/nZ 1
'IN Ij I UM J ,1 +n 7 2* 1)U/n71
VN'(J = VV (J , I +!-2*[Vfr)Z 1
ONI ( J = R IJ . I +r 2-0PP/0 Zl

ICX-CP 1

140 eN7 = N17+1
I vx- X--r'L. 0) C0 TrO 148

7)r 1 42 J = INP T
vWtI(J) = 2
r-(J,N7,2) = r-JJ)*UFtNlY,!N7)
I(J.NZ.2) =UIJ)*UF(NX.N?)
VL,MZ,?1 = VN(J)*Ur-. NX.Z)

14' ~fJ.J, 92) 1 N(J)

frJT-cU(, 220 1
Nk = N'D.-1

j = "1
WrFT~c(~ 230) J FTA (JA F(J NZ 2) J(JNZ 92,V (J, NZ, 2) P(Jo N17.2

rM!IT!TI Gtlc'c FOP NFX Tr F5ATJNJ
fV'l 150 J=1,NIOT
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